Ir al contenido principal

LA TOMOGRAFÍA FANTASMA PODRÍA LLEVAR A IMÁGENES 3D MÁS SEGURAS


Un enfoque poco convencional conocido como imágenes fantasma podría revolucionar el examen de tomografía tridimensional (3D) para detectar los primeros signos de alerta de la enfermedad. 

Desarrollado en Australian National University (ANU; Canberra), Monash University (Melbourne, Australia) y The European Synchrotron (Grenoble, Francia), la tomografía fantasma (GT) utiliza patrones de intensidad de rayos X aleatorios para iluminar un objeto desde varios ángulos, con Cada haz se divide en dos. El patrón se registra en el haz primario, que actúa como una referencia ya que no penetra en el objeto; el haz secundario pasa a través del objeto, con la transmisión de rayos X grabada por un detector de un solo píxel.

Luego, una computadora crea una imagen de proyección de rayos X bidimensional (2D) a partir de la grabación. El proceso se repite a diferentes orientaciones para construir una imagen 3D completa. Para el estudio de prueba de concepto, los investigadores fotografiaron una imagen fantasma en 3D de un objeto simple (5,6 mm de diámetro) con una resolución relativamente baja de aproximadamente 0,1 mm. Según los investigadores, la imagen 3D resultante puede mostrar el interior de los objetos que son opacos a la luz visible. El estudio fue publicado en la edición de diciembre de 2018 de Optica.

“La belleza de usar la técnica de imágenes fantasma para imágenes 3D es que la mayor parte de la dosis de rayos X ni siquiera está dirigida hacia el objeto que desea capturar; esa es la naturaleza fantasmal de lo que estamos haciendo ", dijo el autor principal Andrew Kingston, PhD, de la Escuela de Física e Ingeniería de ANU. "Existe un gran potencial para reducir significativamente las dosis de rayos X en imágenes médicas con imágenes de fantasmas en 3D y para mejorar realmente la detección temprana de enfermedades como el cáncer de mama".

"Las imágenes fantasma de rayos X en 3D, o la tomografía fantasma, son un campo completamente nuevo, por lo que hay una oportunidad para que la comunidad científica y la industria trabajen juntas para explorar y desarrollar esta innovación emocionante", concluyó el Dr. Kingston. "Una variación de nuestro enfoque no requiere una cámara de rayos X, solo un sensor; esto haría que la configuración de imágenes médicas en 3D sea mucho más barata". 

Enlaces relacionados: Universidad Nacional Australiana Monash University The European Synchrotron

Comentarios

Entradas más populares de este blog

EL MAGNETOENCEFALOGRAMA AYUDA AL DIAGNÓSTICO Y TRATAMIENTO DE LA EPILEPSIA Y OTROS TRASTORNOS

La magnetoencefalografía puede detectar la actividad neuronal de forma no invasiva al medir los campos magnéticos que rodean la cabeza humana. La técnica se usa normalmente para estudios de neurociencia y, cada vez más, para evaluación prequirúrgica y planificación quirúrgica en pacientes con epilepsia. Las aplicaciones emergentes incluyen esquizofrenia, autismo y diagnóstico de lesión cerebral traumática. O  utilizado de manera rigurosa solo con fines de investigación, la magnetoencefalografía (MEG) se ha introducido en la atención clínica en las últimas décadas.  Con aplicaciones en la epilepsia que ya se benefician de su uso, y aún otras en el horizonte, la técnica está ayudando a avanzar en el diagnóstico y tratamiento de una variedad de enfermedades, trastornos y lesiones. ¿Qué es la magnetoencefalografía (MEG)? La magnetoencefalografía registra las interrupciones en los campos magnéticos muy débiles que rodean la cabeza humana causados ​​por la actividad eléctrica as

Mini C-Arm PROPORCIONA UNA VERDADERA SOLUCIÓN DE RADIOLOGÍA PORTATIL

Un dispositivo portátil, liviano de fluoroscopia y de imágenes de rayos X permite obtener imágenes de rayos X de las extremidades en el punto de atención (POC).  El sistema de imágenes de rayos X Smart-C-arm de Turner Imaging Systems (Orem, UT, EE. UU.) Es un sistema de rayos X plegable, extremadamente portátil y alimentado por batería que pesa solo 7 kg, lo que permite que se pueda llevar a mano para El POC, ya sea en un hospital, sala de cirugía, clínica móvil o en el campo. Dado que el sistema totalmente inalámbrico no necesita cables, cables ni fuente de alimentación, es ideal para imágenes médicas móviles. Además, el brazo Smart-C también proporciona una plataforma quirúrgica integrada con un brazo articulado y un monitor independientes para una mayor flexibilidad en cualquier entorno de atención médica. Las características incluyen un marco de fibra de carbono para mayor durabilidad y resistencia; un detector de panel plano de alta sensibilidad (FPD) de 15x15 cm con un sen

LOS NUEVOS NANOTOTS PUEDEN MANIPULAR CÉLULAS HUMANAS

Los investigadores han colocado con éxito una cuenta robótica de nanoescala dentro de una célula humana. Los investigadores han  diseñado  un conjunto de "pinzas" magnéticas que pueden colocar una cuenta de nanoescala dentro de una célula humana.  El desarrollo es parte del trabajo del profesor Yu Sun de la Universidad de Toronto Ingeniería. Sondeo de células vivas Sun y su equipo han estado construyendo robots que pueden manipular y medir células individuales.  Ahora, quieren llevar su trabajo un paso más allá. "Hasta ahora, nuestro robot ha estado explorando fuera de un edificio, tocando la pared de ladrillos y tratando de averiguar qué está pasando dentro", dijo Sun.  "Queríamos desplegar un robot en el edificio y probar todas las habitaciones y estructuras". Esencialmente, los investigadores quieren sondear células vivas.  Para ello, requieren una tecnología más avanzada.  "Las pinzas ópticas - el uso de láseres para sondear célu